Роль таурина в коррекции нарушений углеводного обмена

Южакова А.Е., Нелаева А.А., Хасанова Ю.В.

Эффективная фармакотерапия. 2019. Т. 15. DOI 10.33978/2307-3586-2019-15

В нарушении углеводного обмена важную роль играет абдоминальное ожирение. На его фоне возникают и прогрессируют лептино-, а также инсулинорезистентность. Это приводит к изменению продукции свободных жирных кислот и развитию хронического окислительного стресса. Ситуация усугубляется дисбалансом аминокислот, который ассоциируется со снижением уровня таурина в плазме крови и тканях. Следовательно, таурин может быть использован у пациентов с нарушением углеводного обмена. Препарат способен оказывать положительный эффект на звенья патогенеза инсулинорезистентности как на уровне жировой ткани, так и на уровне печени.

Введение

Важная роль в нарушении углеводного обмена (НУО) отводится изменению соотношения жировой и мышечной тканей в сторону первой. Это приводит к развитию абдоминального ожирения, которое сопровождается изменением метаболизма лептина. Снижение физиологических эффектов лептина ассоциируется с уменьшением антилипотоксического действия, элиминации глюкозы, увеличением продукции глюкозы печенью. Таким образом развивается и прогрессирует инсулинорезистентность (ИР). В условиях ИР происходит срыв регуляции концентрации свободных жирных кислот в плазме крови. При хронически повышенном уровне свободных жирных кислот запускается окислительный стресс и клетки перестают адекватно реагировать на действие инсулина. Избыток висцеральной жировой ткани связан с патологически повышенным поступлением в кровоток провоспалительных цитокинов, что приводит к нарушению гомеостаза в адипоцитах и увеличению липолиза. На баланс жировой ткани влияют такие факторы, как образ жизни (с учетом хронобиологических часов бодрствования и сна), стресс, питание и физическая активность. Необходимо отметить, что последние десятилетия в рационе населения отмечается преобладание быстрых углеводов и рафинированных жиров над белками. Установлено, что избыток быстрых углеводов вызывает развитие резистентности к лептину и повышение уровня триглицеридов (ТГ), дефицит белка – дисбаланс аминокислотного состава. Это в свою очередь приводит к нарушению процессов метаболизма [1]. Ограничение белка в рационе способно вызвать гиперфагию за счет активации лептинорезистентности через гипоталамическую ось [2]. Употребление продуктов с большим содержанием рафинированных жиров ухудшает лизосомальную функцию адипоцитов, что усугубляет ИР и окислительный стресс [3].

По данным ряда авторов, в условиях дисбаланса аминокислот, преобладания липолиза в адипоцитах, прогрессирования инсулино- и лептинорезистентности снижается уровень таурина как в плазме крови, так и в тканях.

Таурин  – жизненно необходимая сульфоаминокислота, которая является конечным продуктом обмена серосодержащих аминокислот (цистеина, метионина, цистеамина) (рис. 1). Функции таурина в организме разнообразны. Известно, что, соединяясь с холевой кислотой, таурин влияет на всасывание жиров и жирорастворимых витаминов. При соединении с хлором выступает в роли окислителя и компонента антибактериальной защиты. В  митохондриях хлорамина таурин воздействует на процесс сборки белков дыхательной цепи и оказывает антиоксидантный эффект. В свободном состоянии таурин регулирует осмотическое давление. Кроме того, он участвует в регуляции выделения желчи. Тауроконъюгаты желчных кислот обладают холеретическим действием и предупреждают развитие холестаза [4]. Таурохолевая кислота снижает количество Escherichia coli в слепой кишке. Таурин уменьшает содержание продуктов жизнедеятельности микроорганизмов в толстой кишке (короткоцепочечных жирных кислот, эндотоксина, оксида азота) [5]. У больных сахарным диабетом (СД) 2 типа таурин улучшает ИР. С одной стороны, он модулирует выработку инсулина – регулирует секрецию инсулина через влияние на уровень внутриклеточного кальция, с  другой – участвует в реализации сигнала инсулина – повышает чувствительность рецепторов к инсулину [6–8]. Кроме того, доказано положительное влияние таурина при эндотелиальной дисфункции, диабетической ретинопатии и  синдроме диабетической стопы.

Установлено, что у пациентов с микроангиопатией концентрация таурина в крови снижена. Поэтому некоторые авторы предлагают использовать его в  качестве маркера для ранней диагностики микроангиопатий у пациентов с СД [9, 10]. Механизмы действия таурина представлены на рис. 2.

Целью нашего исследования стала оценка роли таурина в коррекции углеводного обмена у пациентов с ранними нарушениями углеводного обмена и СД 2 типа.

Материал и методы

Проведен ретроспективный анализ карт пациентов с ожирением и нарушениями углеводного обмена разной степени, а также без нарушений углеводного обмена. С ранними нарушениями углеводного обмена (РНУО) отобрано 20 человек (группа РНУО), с СД 2 типа длительностью до пяти лет – 20 (группа СД), без нарушений углеводного обмена  – 20 больных (группа контроля). Анализировали антропометрические показатели: окружность талии (ОТ), окружность бедер (ОБ), рост и массу тела для расчета индекса массы тела (ИМТ), а  также значения глюкозы плазмы натощак (ГПН), гликированного гемоглобина (HbA1с), лептина, инсулина, индекса гомеостатической модели оценки резистентности к инсулину (Homeostasis Model Assessment of Insulin Resistance – HOMA-IR), триглицеридов (ТГ). Уровень HbA1с исследовали с помощью высокоэффективной жидкостной хроматографии (Bio-Rad D10, США), лептина  – иммуноферментного анализа, иммунореактивного инсулина (ИРИ) – радиоиммунного метода (BIOSEN C-Line, Германия). Значения НОМA-IR рассчитывали по формуле: ИРИ×ГПН : 22,5. От всех участников исследования было получено письменное информированное согласие на обработку данных. Для сравнения выборок использовался непараметрический дисперсионный критерий Краскела – Уоллиса, коэффициент ранговой корреляции Спирмена, а также множественный линейный регрессионный анализ. Критическое значение значимости результатов приняли равным 0,05. Математическая обработка данных проводилась с использованием SPSS Statistics 22.0, Statistica 6.0.

Результаты и их обсуждение

Средний возраст пациентов в группах – 54,50±5,04 года. 75% участников исследования – женщины. Все больные страдали ожирением первой степени (по классификации Всемирной организации здравоохранения 1997 г.). Так, ИМТ в группе контроля составил 31,35±5,85 кг/м2 , в группе РНУО – 32,70 ± 5,12 кг/м2 , в  группе СД  – 33,21±6,12 кг/м2 , ОТ – 96,65±8,53, 98,75 ± 16,49 и  104,05 ± 5,69 см, ОБ  – 92,00 ± 21,89, 112,00 ± 18,91 и 114,42±7,76 см соответственно. Средний уровень ГПН – 4,96±0,46, 5,34 ± 0,48 и  6,89 ± 1,34 ммоль/л, HbA1с  – 5,57 ± 0,45, 6,07 ± 0,53 и  6,27 ± 1,34% соответственно. Значения лептина, инсулина, НОМA-IR, ТГ представлены в табл. 1.

Пациенты группы контроля и РНУО находились на низкоуглеводной диете. Больные СД 2 типа принимали пероральный сахароснижающий препарат из группы бигуанидов и гиполипидемический препарат из группы статинов. С целью лучшей коррекции углеводного обмена и уровня триглицеридов пациентам назначен таурин (Дибикор). Режим применения – по 500 мг два раза в сутки в течение трех месяцев. По истечении данного периода времени ИМТ в группах в среднем снизился на 3,5%, ОТ – на 13,4%, ОБ – на 10,3% (табл. 2). 

Средний уровень HbA1с в  группах составил 4,50±0,35, 5,6±0,42, 6,01±1,23% соответственно. Уровень лептина снизился на 3,96%, инсулина – на 30,5%, значение НОМА-IR – на 0,9%, ТГ – на 1,54% (табл. 3).

Заключение

Согласно полученным результатам, во всех группах таурин способствовал снижению лептино- и инсулинорезистентности за счет сокращения объема висцерального жира и уменьшения уровня ТГ. Следовательно, Дибикор можно использовать при разной степени нарушения углеводного обмена для воздействия на механизмы развития ИР как на уровне жировой ткани, так и на уровне печени.

Литература

  1. Guevara-Cruz M., Vargas-Morales J.M., Méndez-García A.L. et al. Amino acid profiles of young adults differ by sex, body mass index and insulin resistance // Nutr. Metab. Cardiovasc. Dis. 2018. Vol. 28. № 4. P. 393–401.
  2. Camargo R.L., Batista T.M., Ribeiro R.A. et al. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet // Amino Acids. 2015. Vol. 47. № 11. P. 2419–2435.
  3. Kaneko H., Kobayashi M., Mizunoe Y. et al. Taurine is an amino acid with the ability to activate autophagy in adipocytes // Amino Acids. 2018. Vol. 50. № 5. P. 527–535.
  4. La Frano M.R., Hernandez-Carretero A., Weber N. et al. Dietinduced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice // Nutr. Res. 2017. Vol. 46. P. 11–21.
  5. Lin H., An Y., Tang H., Wang Y. Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model // J. Agric. Food Chem. 2019. Vol. 67. № 13. P. 3624–3632.
  6. Аметов А.С. Сахарный диабет 2 типа. Проблемы и решения. Учебное пособие. М.: ГЭОТАР-Медиа, 2015.
  7. Yokoi N., Beppu M., Yoshida E. et al. Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes // Metabolomics. 2015. Vol. 11. № 5. P. 1277–1286.
  8. Ribeiro R.A., Bonfleur M.L., Batista T.M. et al. Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine // Amino Acids. 2018. Vol. 50. № 11. P. 1511–1524.
  9. Agouza I.M.E., Taha A., Mahfouz A.A. et al. The possibility of using serum taurine level as an early marker to control complications of diabetic foot // www.semanticscholar.org/ paper/The-Possibility-of-using-Serum-Taurine-Level-as-anIme-Taha/447f2dc623b0cf1651208a66e2d4582e3293cfde.
  10. Agouza I.M.E., Saad A.H., Mahfouz A.A., Hamdy K. Serum taurine level in relation to ophthalmoscopic examination as early marker for diabetic retinopathy // pdfs.semanticscholar. org/8ea6/3302ffb6aa9cc260c3fa8dc89ea0edf3b128.pdf.